
Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Practice Sheet #08

Topic: Memory Allocation in C

Date: 01-03-2017

1. Given a sequence a0; a1; : : : ; an-1 of distinct numbers, the problem of All Nearest
Smaller Value (ANSV) is to identify for each number ai, the smallest j, j > i, j <= n-1,
such that aj < ai. It is undefined if no such j exists. For example, in the sequence 8; 9;
7; 5; 6, (indexed as 0; 1; 2; 3; 4), the ANSV's are 2; 2; 3; u; u, where u denotes
undefined. (the ANSV for the last element is always unde_ned). Note that you cannot
change the order of the input sequence, since ANSV's depend on this ordering.

Complete the following program that computes the ANSV's by considering the
elements from left to right and by keeping track of those elements for which the
ANSV's are yet to be determined. Clearly, these elements form a monotonically
increasing subsequence ai1 ; ai2 ; : : : ; aik , ai1 < ai2 < _ _ _ < aik , i1 < i2 < _ _ _ < ik.
Initially, the sequence consists of a0. In the j-th step (i.e., when aj+1 is considered), if
aj+1 < aj (= aik) then the ANSV of aj is j + 1, otherwise we add aj+1 to the subsequence.
More generally, aj+1 will be the ANSV for ais ; ais+1; : : : ; aik , if s > 1 and ais+1 < aj+1 <
ais , or if s = 1 and aj+1 < ai1 .

Notice that ais can be detected by working backwards from the end of the sequence,
namely aik , and deleting them one by one. The new element is added at the end, i.e.,
the subsequence becomes ai1 ; ai2 ; : : : ; ais+1 ; aj+1. Evidently, the subsequence can be
maintained as a stack. When we have considered the entire array, the remaining
elements in the stack are the ones whose ANSV's are unde_ned (use -1 to denote it).
Note that in the stack, it is desirable to store the index of the elements (i.e., j instead of
aj). We can recover aj from j.

 #include <stdio.h>

main ()
{
int j, length, *a, *b, *stack, bottom, top;
printf("how many integers?\n"); scanf("%d", &length);
a = (int *)malloc(length*sizeof(int)); /* for storing the input */
b = (int *)malloc(length*sizeof(int)); /* for storing the ANSV's */

/* Allocate memory to stack */
stack =_________________ ;
for (j=0; j<length; j++) scanf("%d",&a[j]); /* Read input */
top = 0; stack[top] = 0; /* Initialize the stack */
for (___________; j+1<length; j++) {
 /* Consider array elements one-by-one */
 while((top _______________) && (a[j+1] <____________)) {
/* j+1 is the ANSV of all elements in the stack that are larger than
a[j+1] */
b[stack[top]] = j+1;
________________________;
}
top = top + 1;
stack[top] = _________________;
}
for (; top ______________; top- -) ____________________= -1; /*
Undefined ANSV */

Page | 1

for (j=0; j<length; j++) printf("%d\n", b[j]); /* Print the ANSV's */
}

2. How many bytes are allocated to the pointer p after the following call?

#define MAXSIZE 100
p = (long int *)malloc(MAXSIZE * sizeof(long int));

 (a) 4

(b) 100
(c) 400
(d) 1600

3. Suppose we have the following statement inside a function foo(), and int *p is a global

variable:
p = (int *) malloc(50 * sizeof(int));
Suppose main() calls foo(). From which of the following places can we access the
memory allocated by this call?

 (a) Only within the function foo()
(b) Within the function foo() and the function main()
(c) Within any function, that is, the memory is global

4. Code for dynamically allocating memory for an array of 10 ratTyp elements and

storing the array
address in ratArr is:________________

5. Dynamically allocated memory should be freed after its use. Mark as True or False.

6. Dynamically allocate a 2-D array of characters to a pointer for storing 100 strings each

of maximum character length 80. Write a C program for it.

--*--

